International Journal of Infection

Published by: Kowsar

Phenotypic Detection of Β-Lactam Antibiotics, Methicillin and Inducible Clindamycin Resistance Among Bacterial Isolates in Patients with Otitis Externa

Zahra Shahandeh 1 , Farahnaz Sadighian 1 , Keyvan Kiakojuri 2 , Saeid Mahdavi Omran 3 , Mahsa Aghajani Mir 4 , * and Hanieh Babajani 4
Authors Information
1 Department of Laboratory Sciences, Paramedical Faculty, Babol University of Medical Sciences, Babol, IR Iran
2 Department of ENT, Faculty of Medicine, Roohani Hospital, Babol University of Medical Sciences, Babol, IR Iran
3 Department of Medical Parasitology and Mycology, Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, IR Iran
4 Student Research Committee, Babol University of Medical Sciences, Babol, IR Iran
Article information
  • International Journal of Infection: April 2018, 5 (2); e58844
  • Published Online: April 21, 2018
  • Article Type: Research Article
  • Received: July 26, 2017
  • Revised: September 26, 2017
  • Accepted: October 24, 2017
  • DOI: 10.5812/iji.58844

To Cite: Shahandeh Z, Sadighian F, Kiakojuri K, Mahdavi Omran S, Aghajani Mir M, et al. Phenotypic Detection of Β-Lactam Antibiotics, Methicillin and Inducible Clindamycin Resistance Among Bacterial Isolates in Patients with Otitis Externa, Int J Infect. 2018 ; 5(2):e58844. doi: 10.5812/iji.58844.

Copyright © 2018, International Journal of Infection. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Mahon CR, Lehman DC, Manuselis G. Antimicrobial agents mechanisms of action and resistnce. Textbook of diagnostic microbiology. China: Elsevier Health Sciences; 2014.
  • 2. Shahandeh Z, Sadighian F, Beigom Rekabpor K. Phenotypic Detection of ESBL, MBL (IMP-1), and AmpC Enzymes, and Their Coexistence in Enterobacter and Klebsiella Species Isolated FromClinical Specimens. Int J Enteric Pathog. 2016;4(2):1-7.
  • 3. Shahandeh Z, Sadighian F, Rekabpou KB. Phenotypic study of Extended-spectrum beta-lactamase, AmpC and Carbapenemase among E. coli clinical isolates in affiliated hospitals of Babol University of Medical Sciences. Int J Health System Disaster Manag. 2015;3(2):74.
  • 4. Sireesha P, Setty CR. Detection of various types of resistance patterns and their correlation with minimal inhibitory concentrations against clindamycin among methicillin-resistant Staphylococcus aureus isolates. Indian J Med Microbiol. 2012;30(2):165-9. doi: 10.4103/0255-0857.96678. [PubMed: 22664431].
  • 5. Pereira JN, Rabelo MA, Lima JL, Neto AM, Lopes AC, Maciel MA. Phenotypic and molecular characterization of resistance to macrolides, lincosamides and type B streptogramin of clinical isolates of Staphylococcus spp. of a university hospital in Recife, Pernambuco, Brazil. Braz J Infect Dis. 2016;20(3):276-81. doi: 10.1016/j.bjid.2016.03.003. [PubMed: 27094233].
  • 6. Carroll KC, Butel JS, Morse SA, Timothy M. Antimicrobial chemotherapy. Jawetz, Melnic and adelberg,s medical microbiology. Toronto: Mc Graw Hill; 2007.
  • 7. Procop GW, Church DL, Hall GS, Janda WM, Koneman EW. Schreckende PC, Woods GL. Gram positive cocci. Koneman,s color atlas and textbook of diagnostic microbiology. Tokyo: Wolters Kluwer; 2017.
  • 8. Bashir A, Johar J, Jawad A. Comparison of clinical methods for the phenotypic detection of Methicillin resistant Staphylococcus aureus: Disc diffusion methods with BrillianceTM MRSA agar. Afr J Microbiol Res. 2013;7(24):3096-100. doi: 10.5897/ajmr12.2177.
  • 9. Tiwari HK, Sapkota D, Das AK, Sen MR. Assessment of different tests to detect methicillin resistant Staphylococcus aureus. Southeast Asian J Trop Med Public Health. 2009;40(4):801-6. [PubMed: 19842418].
  • 10. Mahon CR, Lehman DC, Manuselis G. Staphylococci. Textbook of diagnostic microbiology-E-Book. China: Elsevier Health Sciences; 2014.
  • 11. Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. doi: 10.1111/j.1469-0691.2011.03570.x. [PubMed: 21793988].
  • 12. Nogueira JCR, Diniz MFFM, Lima EO, Lima ZN. Identification and antimicrobial susceptibility of acute external otitis microorganisms. Braz J Otorhinolaryngol. 2008;74(4):526-30. doi: 10.1016/s1808-8694(15)30598-x.
  • 13. Kiakojuri K, Mahdavi Omran S, Jalili B, Hajiahmadi M, Bagheri M, Ferdousi Shahandashti E, et al. Bacterial Otitis Externa in Patients Attending an ENT Clinic in Babol, North of Iran. Jundishapur J Microbiol. 2016;9(2). e23093. doi: 10.5812/jjm.23093. [PubMed: 27127584].
  • 14. Appiah-Korang L, Asare-Gyasi S, Yawson AE, Searyoh K. Aetiological agents of ear discharge: a two year review in a teaching hospital in Ghana. Ghana Med J. 2014;48(2):91-5. [PubMed: 25667556].
  • 15. Ahmad S. Antibiotics in chronic suppurative otitis media: A bacteriologic study. Egypt J Ear Nose Throat Allied Sci. 2013;14(3):191-4. doi: 10.1016/j.ejenta.2013.06.001.
  • 16. Hailu D, Mekonnen D, Derbie A, Mulu W, Abera B. Pathogenic bacteria profile and antimicrobial susceptibility patterns of ear infection at Bahir Dar Regional Health Research Laboratory Center, Ethiopia. Springerplus. 2016;5:466. doi: 10.1186/s40064-016-2123-7. [PubMed: 27119070].
  • 17. Argaw-Denboba A, Abejew AA, Mekonnen AG. Antibiotic-resistant bacteria are major threats of otitis media in Wollo Area, Northeastern Ethiopia: a ten-year retrospective analysis. Int J Microbiol. 2016;2016.
  • 18. Tille PM. Chapters Enterobacteriaceae, Acinetobacter, Sterotrophomonas similar organism, Staphylococcus, Micrococcus organisms". Bailey & Scott's Diagnostic Microbiology. China: Elsevier; 2014.
  • 19. Clinical and laboratory standards institue (CLSI). Performance standard for antimicrobial susceptibility testing. 2014.
  • 20. Jean B, Franklin RJA. Performance standard for antimicrobial susceptibility testing. Clinical and laboratory standards institue (CLSI); 2015. p. M100-S24.
  • 21. Shafiq M, Rahman H, Qasim M, Ayub N, Hussain S, Khan J, et al. Prevalence of plasmid-mediated AmpC beta-lactamases in Escherichia coli and Klebsiella pneumonia at tertiary care hospital of Islamabad, Pakistan. Eur J Microbiol Immunol (Bp). 2013;3(4):267-71. doi: 10.1556/EuJMI.3.2013.4.5. [PubMed: 24294496].
  • 22. Sharma M, Pathak S, Srivastava P. Prevalence and antibiogram of Extended Spectrum beta-Lactamase (ESBL) producing Gram negative bacilli and further molecular characterization of ESBL producing Escherichia coli and Klebsiella spp. J Clin Diagn Res. 2013;7(10):2173-7. doi: 10.7860/JCDR/2013/6460.3462. [PubMed: 24298468].
  • 23. Sari AN, Bicmen M, Gulay Z. [Investigation of plasmid mediated AmpC beta-lactamases among Escherichia coli and Klebsiella pneumoniae isolated from blood cultures]. Mikrobiyol Bul. 2013;47(4):582-91. [PubMed: 24237427].
  • 24. Mahdian S, Sadeghifard N, Pakzad I, Ghanbari F, Soroush S, Azimi L, et al. Acinetobacter baumannii clonal lineages I and II harboring different carbapenem-hydrolyzing-beta-lactamase genes are widespread among hospitalized burn patients in Tehran. J Infect Public Health. 2015;8(6):533-42. doi: 10.1016/j.jiph.2015.04.030. [PubMed: 26111484].
  • 25. Khorsi K, Messai Y, Hamidi M, Ammari H, Bakour R. High prevalence of multidrug-resistance in Acinetobacter baumannii and dissemination of carbapenemase-encoding genes blaOXA-23-like, blaOXA-24-like and blaNDM-1 in Algiers hospitals. Asian Pac J Trop Med. 2015;8(6):438-46. doi: 10.1016/j.apjtm.2015.05.011. [PubMed: 26194827].
  • 26. Shahali H, Amirabadi Farhani A. Sepsis Neonatal in Negative Cougulas Staphylococcus of Role hospital Ghods at Admitted Patients in (2006 Autumn-Ghazvin). Ann Mil Health Sci Res. 2009;6(4):245-8.
  • 27. Bhatt P, Tandel K, Singh A, Kumar M, Grover N, Sahni AK. Prevalence and molecular characterization of methicillin resistance among Coagulase-negative Staphylococci at a tertiary care center. Med J Armed Forces India. 2016;72(Suppl 1):S54-8. doi: 10.1016/j.mjafi.2016.03.007. [PubMed: 28050071].
  • 28. Ansari S, Gautam R, Shrestha S, Ansari SR, Subedi SN, Chhetri MR. Risk factors assessment for nasal colonization of Staphylococcus aureus and its methicillin resistant strains among pre-clinical medical students of Nepal. BMC Res Notes. 2016;9:214. doi: 10.1186/s13104-016-2021-7. [PubMed: 27068121].
  • 29. Ullah A, Qasim M, Rahman H, Khan J, Haroon M, Muhammad N, et al. High frequency of methicillin-resistant Staphylococcus aureus in Peshawar Region of Pakistan. Springerplus. 2016;5:600. doi: 10.1186/s40064-016-2277-3. [PubMed: 27247896].
  • 30. Titecat M, Senneville E, Wallet F, Dezeque H, Migaud H, Courcol RJ, et al. Microbiologic profile of Staphylococci isolated from osteoarticular infections: evolution over ten years. Surg Infect (Larchmt). 2015;16(1):77-83. doi: 10.1089/sur.2013.258. [PubMed: 25650692].
  • 31. Jones RN, Castanheira M, Hu B, Ni Y, Lin SS, Mendes RE, et al. Update of contemporary antimicrobial resistance rates across China: reference testing results for 12 medical centers (2011). Diagn Microbiol Infect Dis. 2013;77(3):258-66. doi: 10.1016/j.diagmicrobio.2013.07.003. [PubMed: 24055218].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments