International Journal of Infection

Published by: Kowsar

Antibody Response is Differentially Influenced by PLGA-PAD4 Particle Characteristics

Manish Manish 1 , 2 , 3 and Rakesh Bhatnagar 1 , *
Authors Information
1 School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
2 Department of Biosciences, Manipal University Jaipur, Jaipur-Ajmer Express Highway, Rajasthan 303007
3 Lab no 406, National Institute of Malaria Research, Dwarka, Sec-8, New Delhi
Article information
  • International Journal of Infection: October 2017, 4 (4); e15594
  • Published Online: June 28, 2017
  • Article Type: Research Article
  • Received: November 24, 2016
  • Revised: January 3, 2017
  • Accepted: January 3, 2017
  • DOI: 10.5812/iji.15594

To Cite: Manish M, Bhatnagar R. Antibody Response is Differentially Influenced by PLGA-PAD4 Particle Characteristics, Int J Infect. 2017 ; 4(4):e15594. doi: 10.5812/iji.15594.

Abstract
Copyright © 2017, International Journal of Infection. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnote
References
  • 1. Flick-Smith HC, Eyles JE, Hebdon R, Waters EL, Beedham RJ, Stagg TJ, et al. Mucosal or parenteral administration of microsphere-associated Bacillus anthracis protective antigen protects against anthrax infection in mice. Infect Immun. 2002; 70(4): 2022-8[DOI][PubMed]
  • 2. Scobie HM, Rainey GJ, Bradley KA, Young JA. Human capillary morphogenesis protein 2 functions as an anthrax toxin receptor. Proc Natl Acad Sci U S A. 2003; 100(9): 5170-4[DOI][PubMed]
  • 3. Leysath CE, Monzingo AF, Maynard JA, Barnett J, Georgiou G, Iverson BL, et al. Crystal structure of the engineered neutralizing antibody M18 complexed to domain 4 of the anthrax protective antigen. J Mol Biol. 2009; 387(3): 680-93[DOI][PubMed]
  • 4. Brossier F, Levy M, Landier A, Lafaye P, Mock M. Functional analysis of Bacillus anthracis protective antigen by using neutralizing monoclonal antibodies. Infect Immun. 2004; 72(11): 6313-7[DOI][PubMed]
  • 5. Brossier F, Sirard JC, Guidi-Rontani C, Duflot E, Mock M. Functional analysis of the carboxy-terminal domain of Bacillus anthracis protective antigen. Infect Immun. 1999; 67(2): 964-7[PubMed]
  • 6. Rosovitz MJ, Schuck P, Varughese M, Chopra AP, Mehra V, Singh Y, et al. Alanine-scanning mutations in domain 4 of anthrax toxin protective antigen reveal residues important for binding to the cellular receptor and to a neutralizing monoclonal antibody. J Biol Chem. 2003; 278(33): 30936-44[DOI][PubMed]
  • 7. Gorantala J, Grover S, Goel D, Rahi A, Jayadev Magani SK, Chandra S, et al. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine. 2011; 29(27): 4521-33[DOI][PubMed]
  • 8. Brodzik R, Bandurska K, Deka D, Golovkin M, Koprowski H. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta. Biochem Biophys Res Commun. 2005; 338(2): 717-22[DOI][PubMed]
  • 9. Smith ME, Koser M, Xiao S, Siler C, McGettigan JP, Calkins C, et al. Rabies virus glycoprotein as a carrier for anthrax protective antigen. Virology. 2006; 353(2): 344-56[DOI][PubMed]
  • 10. Park YS, Lee JH, Hung CF, Wu TC, Kim TW. Enhancement of antibody responses to Bacillus anthracis protective antigen domain IV by use of calreticulin as a chimeric molecular adjuvant. Infect Immun. 2008; 76(5): 1952-9[DOI][PubMed]
  • 11. Baillie LW, Huwar TB, Moore S, Mellado-Sanchez G, Rodriguez L, Neeson BN, et al. An anthrax subunit vaccine candidate based on protective regions of Bacillus anthracis protective antigen and lethal factor. Vaccine. 2010; 28(41): 6740-8[DOI][PubMed]
  • 12. Williams AS, Lovell S, Anbanandam A, El-Chami R, Bann JG. Domain 4 of the anthrax protective antigen maintains structure and binding to the host receptor CMG2 at low pH. Protein Sci. 2009; 18(11): 2277-86[DOI][PubMed]
  • 13. van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res. 2000; 17(10): 1159-67[DOI][PubMed]
  • 14. Cleland JL, Powell MF, Shire SJ. The development of stable protein formulations: a close look at protein aggregation, deamidation, and oxidation. Crit Rev Ther Drug Carrier Syst. 1993; 10(4): 307-77[PubMed]
  • 15. Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci. 2008; 97(7): 2395-404[DOI][PubMed]
  • 16. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm. 2008; 364(2): 272-80[DOI][PubMed]
  • 17. Manish M, Bhatnagar R, Singh S. Preparation and Characterization of PLGA Encapsulated Protective Antigen Domain 4 Nanoformulation. Methods Mol Biol. 2016; 1404: 669-81[DOI][PubMed]
  • 18. Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S. A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One. 2013; 8(4)[DOI][PubMed]
  • 19. Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res. 2010; 27(5): 905-19[DOI][PubMed]
  • 20. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines. 2010; 9(9): 1095-107[DOI][PubMed]
  • 21. O'Hagan DT, Jeffery H, Davis SS. The preparation and characterization ofpoly(lactide-co-glycolide) microparticles: III. Microparticle/polymer degradation rates and the in vitro release of a model protein. Int J Pharm. 1994; 103(1): 37-45[DOI]
  • 22. Katare YK, Muthukumaran T, Panda AK. Influence of particle size, antigen load, dose and additional adjuvant on the immune response from antigen loaded PLA microparticles. Int J Pharm. 2005; 301(1-2): 149-60[DOI][PubMed]
  • 23. Bondos SE, Bicknell A. Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem. 2003; 316(2): 223-31[DOI][PubMed]
  • 24. Pistel KF, Kissel T. Effects of salt addition on the microencapsulation of proteins using W/O/W double emulsion technique. J Microencapsul. 2000; 17(4): 467-83[DOI][PubMed]
  • 25. De Rosa G, Quaglia F, Bochot A, Ungaro F, Fattal E. Long-term release and improved intracellular penetration of oligonucleotide-polyethylenimine complexes entrapped in biodegradable microspheres. Biomacromolecules. 2003; 4(3): 529-36[DOI][PubMed]
  • 26. Gomes dos Santos AL, Bochot A, Doyle A, Tsapis N, Siepmann J, Siepmann F, et al. Sustained release of nanosized complexes of polyethylenimine and anti-TGF-beta 2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release. 2006; 112(3): 369-81[DOI][PubMed]
  • 27. Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004; 27(1): 1-12[DOI][PubMed]
  • 28. Ghaderi R, Sturesson C, Carlfors J. Effect of preparative parameters on the characteristics of poly d,l-lactide-co-glycolide)microspheres made by the double emulsion method. Int J Pharm. 1996; 141(1-2): 205-16[DOI]
  • 29. Khang G, Cho JC, Lee JW, Rhee JM, Lee HB. Preparation and characterization of Japanese encephalitis virus vaccine loaded poly(L-lactide-co-glycolide) microspheres for oral immunization. Biomed Mater Eng. 1999; 9(1): 49-59[PubMed]
  • 30. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001; 73(2-3): 121-36[DOI][PubMed]
  • 31. Makino K, Nakajima T, Shikamura M, Ito F, Ando S, Kochi C, et al. Efficient intracellular delivery of rifampicin to alveolar macrophages using rifampicin-loaded PLGA microspheres: effects of molecular weight and composition of PLGA on release of rifampicin. Colloids Surf B Biointerfaces. 2004; 36(1): 35-42[DOI][PubMed]
  • 32. Feng L, Qi XR, Zhou XJ, Maitani Y, Wang SC, Jiang Y, et al. Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres. J Control Release. 2006; 112(1): 35-42[DOI][PubMed]
  • 33. Tabata Y, Ikada Y. Macrophage phagocytosis of biodegradable microspheres composed of L-lactic acid/glycolic acid homo- and copolymers. J Biomed Mater Res. 1988; 22(10): 837-58[DOI][PubMed]
  • 34. Hirota K, Hasegawa T, Hinata H, Ito F, Inagawa H, Kochi C, et al. Optimum conditions for efficient phagocytosis of rifampicin-loaded PLGA microspheres by alveolar macrophages. J Control Release. 2007; 119(1): 69-76[DOI][PubMed]
  • 35. Foster KA, Yazdanian M, Audus KL. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol. 2001; 53(1): 57-66[DOI][PubMed]
  • 36. Panyam J, Dali MM, Sahoo SK, Ma W, Chakravarthi SS, Amidon GL, et al. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release. 2003; 92(1-2): 173-87[PubMed]
  • 37. Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials. 2007; 28(35): 5344-57[DOI][PubMed]
  • 38. Gutierro I, Hernandez RM, Igartua M, Gascon AR, Pedraz JL. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine. 2002; 21(1-2): 67-77[DOI][PubMed]
  • 39. Rahman Z, Zidan AS, Habib MJ, Khan MA. Understanding the quality of protein loaded PLGA nanoparticles variability by Plackett-Burman design. Int J Pharm. 2010; 389(1-2): 186-94[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments