International Journal of Infection

Published by: Kowsar

Effect of Osthole on the Control of Listeriosis

Javad Abkhoo 1 and Somayeh Jahani 2 , *
Authors Information
1 Institute of Plant Biotechnology, University of Zabol, Zabol, IR Iran
2 Infectious Disease and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
Article information
  • International Journal of Infection: October 01, 2016, 3 (4); e39029
  • Published Online: June 12, 2016
  • Article Type: Research Article
  • Received: May 8, 2016
  • Revised: May 14, 2016
  • Accepted: May 16, 2016
  • DOI: 10.17795/iji.39029

To Cite: Abkhoo J, Jahani S. Effect of Osthole on the Control of Listeriosis, Int J Infect. 2016 ; 3(4):e39029. doi: 10.17795/iji.39029.

Copyright © 2016, Infectious Diseases and Tropical Medicine Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Helander IM, Alakomi HL, Latva-Kala K, Mattila-Sandholm T, Pol I, Smid EJ, et al. Characterization of the Action of Selected Essential Oil Components on Gram-Negative Bacteria. J Agricul Food Chemist. 1998; 46(9): 3590-5[DOI]
  • 2. Khan SH, Badovinac VP. Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses. Semin Immunopathol. 2015; 37(3): 301-10[DOI][PubMed]
  • 3. Wei J, Guo N, Liang J, Yuan P, Shi Q, Tang X, et al. DNA microarray gene expression profile of Mycobacterium tuberculosis when exposed to osthole. Pol J Microbiol. 2013; 62(1): 23-30[PubMed]
  • 4. Shabala L, Budde B, Ross T, Siegumfeldt H, Jakobsen M, McMeekin T. Responses of Listeria monocytogenes to acid stress and glucose availability revealed by a novel combination of fluorescence microscopy and microelectrode ion-selective techniques. Appl Environ Microbiol. 2002; 68(4): 1794-802[PubMed]
  • 5. Lundin A. Use of firefly luciferase in ATP-related assays of biomass, enzymes, and metabolites. Methods Enzymol. 2000; 305: 346-70[PubMed]
  • 6. Ishida A, Yoshikawa T, Nakazawa T, Kamidate T. Enhanced firefly bioluminescence assay of ATP in the presence of ATP extractants by using diethylaminoethyl-dextran. Anal Biochem. 2002; 305(2): 236-41[DOI][PubMed]
  • 7. Lauret R, Morel-Deville F, Berthier F, Champomier-Verges M, Postma P, Ehrlich SD, et al. Carbohydrate Utilization in Lactobacillus sake. Appl Environ Microbiol. 1996; 62(6): 1922-7[PubMed]
  • 8. Ultee A, Bennik MH, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 2002; 68(4): 1561-8[PubMed]
  • 9. Ultee A, Gorris LG, Smid EJ. Bactericidal activity of carvacrol towards the food-borne pathogen Bacillus cereus. J Appl Microbiol. 1998; 85(2): 211-8[PubMed]
  • 10. Bowles BL, Miller AJ. Antibotulinal properties of selected aromatic and aliphatic aldehydes. J Food Prot. 1993; 56(1): 788–94[PubMed]
  • 11. Ultee A, Kets EP, Smid EJ. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol. 1999; 65(10): 4606-10[PubMed]
  • 12. Kwon JA, Yu CB, Park HD. Bacteriocidal effects and inhibition of cell separation of cinnamic aldehyde on Bacillus cereus. Lett Appl Microbiol. 2003; 37(1): 61-5[PubMed]
  • 13. Lambert RJW, Skandamis PN, Coote PJ, Nychas GJE. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001; 91(3): 453-62
  • 14. Wendakoon CN, Sakaguchi M. Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. J Food Prot. 1995; 5(1): 280–3[DOI][PubMed]
  • 15. Rico-Munoz E, Bargiota EE, Davidson PM. Effect of selected phenolic compounds on the membrane-bound adenosine triphosphatase of Staphylococcus aureus. Food Microbiol. 1987; 4(1): 239–49[DOI][PubMed]
  • 16. Blaszyk M, Holley RA. Interaction of monolaurin, eugenol and sodium citrate on growth of common meat spoilage and pathogenic organisms. Int J Food Microbiol. 1998; 39(3): 175-83[PubMed]
  • 17. Brul S, Coote P. Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol. 1999; 50: 1–17[DOI][PubMed]
  • 18. Parker C, Hutkins RW. Listeria monocytogenes Scott A transports glucose by high-affinity and low-affinity glucose transport systems. Appl Environ Microbiol. 1997; 63(2): 543-6[PubMed]
  • 19. Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J Appl Microbiol. 2003; 94(2): 240-7[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments