International Journal of Infection

Published by: Kowsar

Antibacterial Effects of Silver Nanoparticles Produced by Satureja hortensis Extract on Isolated Bacillus cereus from Soil of Sistan Plain

Ebrahim Shirmohammadi 1 , Saeide Saeidi 2 , Taher Mohasseli 3 , * and Ali Rahimian Boogar 4
Authors Information
1 Department of Soil Engineering Sciences, Faculty of Water and Soil Engineering, University of Zabol, Zabol, IR Iran
2 Infectious Diseases and Tropical Medicine Research Center, Zahedan University of Medical Sciences, Boo-Ali Hospital, Zahedan, IR Iran
3 Department of Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, IR Iran
4 Department of Horticultural Sciences, Faculty of Agriculture, University of Zabol, Zabol, IR Iran
Article information
  • International Journal of Infection: September 20, 2014, 1 (3); e21944
  • Published Online: September 20, 2014
  • Article Type: Research Article
  • Received: July 11, 2014
  • Revised: July 28, 2014
  • Accepted: July 29, 2014
  • DOI: 10.17795/iji-21944

To Cite: Shirmohammadi E, Saeidi S, Mohasseli T, Rahimian Boogar A. Antibacterial Effects of Silver Nanoparticles Produced by Satureja hortensis Extract on Isolated Bacillus cereus from Soil of Sistan Plain, Int J Infect. 2014 ; 1(3):e21944. doi: 10.17795/iji-21944.

Abstract
Copyright © 2014, Infectious Diseases and Tropical Medicine Research Center. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Result
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Watanabe K, Hayano K. Distribution and identification of proteolytic Bacillus spp. in paddy field soil under rice cultivation. Can J Microbiol. 1993; 39(7): 674-80[PubMed]
  • 2. Stenfors Arnesen LP, Fagerlund A, Granum PE. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol Rev. 2008; 32(4): 579-606[DOI][PubMed]
  • 3. Hajhashemi V, Sadraei H, Ghannadi AR, Mohseni M. Antispasmodic and anti-diarrhoeal effect of Satureja hortensis L. essential oil. J Ethnopharmacol. 2000; 71(1-2): 187-92[PubMed]
  • 4. Milos M, Radonic A, Bezic N, Dunkic V. Localities and seasonal variations in the chemical composition of essential oils of Satureja montana L. and S. cuneifolia Ten. Flavour Fragr J. 2001; 16(3): 157-60[DOI]
  • 5. Góra J, Lis A, Lewandowski A. Chemical composition of the essential oil of cultivated summer savory (Satureja hortensis L. cv. Saturn). J Essent Oil Res. 1996; 8(4): 427-8[DOI]
  • 6. Okoh AI. Biodegradation of Bonny light crude oil in soil microcosm by some bacterial strains isolated from crude oil flow stations saver pits in Nigeria. Afr J Biotechnol. 2003; 2(5): 104-8
  • 7. Yu J, Lei J, Yu H, Cai X, Zou G. Chemical composition and antimicrobial activity of the essential oil of Scutellaria barbata. Phytochemistry. 2004; 65(7): 881-4[DOI][PubMed]
  • 8. Albrecht MA, Evans CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem. 2006; 8(5): 417-32[DOI]
  • 9. Joerger R, Klaus T, Granqvist CG. Biologically Produced Silver–Carbon Composite Materials for Optically Functional Thin‐Film Coatings. Adv Mater. 2000; 12(6): 407-9[DOI]
  • 10. Shankar SS, Ahmad A, Pasricha R, Sastry M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chemi. 2003; 13(7): 1822-6[DOI]
  • 11. Shankar SS, Ahmad A, Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog. 2003; 19(6): 1627-31[DOI][PubMed]
  • 12. Sunkar S, Nachiyar CV. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus. Asian Pac J Trop Biomed. 2012; 2(12): 953-9[DOI][PubMed]
  • 13. Awwad AM, Salem NM, Abdeen AO. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind Chem. 2013; 4(1): 1-6[DOI]
  • 14. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K. Biosynthesis of silver nanoparticles using citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2011; 79(3): 594-8[DOI][PubMed]
  • 15. Mubayi A, Chatterji S, Rai PM, Watal G. Evidence based green synthesis of nanoparticles. Adv Mater Lett. 2012; 3(6): 519-25
  • 16. Kora AJ, Beedu SR, Jayaraman A. Size-controlled green synthesis of silver nanoparticles mediated by gum ghatti (Anogeissus latifolia) and its biological activity. Org Med Chem Lett. 2012; 2(17): 1-10
  • 17. Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor Dent Endod. 2014; 39(2): 109-14[DOI][PubMed]
  • 18. El Kassas HY, Attia AA. Bactericidal application and cytotoxic activity of biosynthesized silver nanoparticles with an extract of the red seaweed Pterocladiella capillacea on the HepG2 cell line. Asian Pac J Cancer Prev. 2014; 15(3): 1299-306[PubMed]
  • 19. Thirunavoukkarasu M, Balaji U, Behera S, Panda PK, Mishra BK. Biosynthesis of silver nanoparticle from leaf extract of Desmodium gangeticum (L.) DC. and its biomedical potential. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 116: 424-7[DOI][PubMed]
  • 20. Sudha SS, Rajamanickam K, Rengaramanujam J. Microalgae mediated synthesis of silver nanoparticles and their antibacterial activity against pathogenic bacteria. Indian J Exp Biol. 2013; 51(5): 393-9[PubMed]
  • 21. Bhati-Kushwaha H. Biosynthesis of silver nanoparticles using fresh extracts of Tridax procumbens linn. Indian J Exp Biol. 2014; 52(4): 359-68[PubMed]
  • 22. Mariselvam R, Ranjitsingh AJ, Usha Raja Nanthini A, Kalirajan K, Padmalatha C, Mosae Selvakumar P. Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2014; 129: 537-41[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments